
Follow the
Follow the

to Evaluate Automation

to Evaluate Automation
Page

6

www.softwaretestpro.com MAGAZINE

Volume 9

Issue 2

2012

Ask the Tester
Interview with

Mike Lyles16Never Be Satisfied
– Take time to identify

where you can improve14Database Virtualization
– For Development

and Test 38Hiring Testers From
Outside IT – Look for

something unexpected

The world’s best applications pass
the test of real-world success.

End-to-end application testing. In the wild. On demand.
Today’s best applications are put through their paces
with real-world testing by uTest.

Functional + Security + Load + Localization + UsabilityIn-The-Wild Testing for

www.zelger.org

Another purchase that just wasn’t giraffe accessible.

“I’m Afraid...,
No, This TV does not support
The format ‘portrait’”

 | w w w . s o f t w a r e t e s t p r o . c o m4 V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2

V o l u m e 9 / I s s u e 2

Follow the
Follow the

to Evaluate Automation

to Evaluate Automation

06	Follow the CRUMBS to Evaluate Automation:
A Follow Up Dialogue Between Michael Larsen
and Albert Gareev
Michael Larsen and Albert Gareev

11	 A Tale of Two Testers: Far, Far Better
Stress Tests Than You Have Ever Known
David Borcherding

14	 Database Virtualization for
Development and Test
Wayne Ariola

16	 Never Be Satisfied
Matt Angerer

19	 Intentionally Avoiding Unintended
Side Effects Using Observation Driven
Testing with Test Driven Development
Dale Brenneman

25	Ask the Tester
Matt Heusser, An in-depth interview with Mike Lyles

32	 Think You’re Done?
Jim Hazen

38	Cast Your Eyes Afield: Hiring Testers
From Outside The IT Industry
Brian J. Noggle

@SoftwareTestPro SoftwareTestProfessionals

Contributors

MattAngerer
Retail Software

QA Leader –
METTLER TOLEDO

DavidBorcherding
Marketing Communications

Specialist – Seapine
Software

DaleBrenneman
Vice President of

Technology – Agitar
Technologies, Inc.

AlbertGareev
Dedicated Testing

and Test Automation
Professional

Mike Lyles
QA Program Manager –
Lowe’s Companies Inc.

JimHazen
Consultant –

Connected Testing

Brian J. Noggle
Freelance Software
Testing Consultant –
Jeracor Group LLC.

WayneAriola
VP of Strategy &

Corporate Development
– Parasoft

ST&QA Magazine (ISSN #1548-3460) (USPS #23771) is published bi-monthly by Redwood
Collaborative Media (724 S. Tejon Street, Suite C, Colorado Springs, CO 80903). Periodicals postage
paid at Colorado Springs and additional mailing offices. The price of a one year subscription is US
$69 for postal addresses within North America; $119 elsewhere. ST&QA Magazine is a registered
trademark of Redwood Collaborative Media. All contents copyrighted 2010 Redwood Collaborative
Media. All rights reserved. POSTMASTER: Send changes of address to Software Test Professionals,
724 S, Tejon Street, Suite C, Colorado Springs, CO 80903. To contact ST&QA Magazine subscriber
services, please send an e-mail to info@softwaretestpro.com or call 719.476.0301.

Editor-in Chief: Rich Hand
rhand@softwaretestpro.com

Creative Director: Scott Hanson
shanson@softwaretestpro.com

How to reach ST&QA
Letters to the editor may be sent to:
editor@softwaretestpro.com

About Software Test Professionals (STP)
STP provides more than 50,000
software professionals with information,
education, training and professional
networking opportunities.

724 S Tejon Suite C • Colorado Springs
Colorado, 80903 • 719.476.0301

About ST&QA
ST&QA is published bi-monthly by
STP (Jan, Mar, May, July, Sept, Nov).
It is a digital magazine geared towards
the software test and quality assurance
professional. Subscription to ST&QA
is an STP Pro Membership benefit.
If you would like to subscribe to ST&QA,
visit softwaretestpro.com and join the
Pro Membership.

Back Issues of ST&P and ST&QA
Pro Members may access electronic
back issues at www.stqamag.com.

Editorial Submissions
Visit softwaretestpro.com to learn more
about submitting editorial to ST&QA.

MichaelLarsen
Lone Tester –
SideReel.com

Page

6

V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2 5

letterfrom the | editor

A
s we prepare for the
conference in New
Orleans, it is exciting
to welcome some new
sponsors to our event.

It is also very exciting to have our
veteran sponsors coming back
which to us is a sign that we are
providing an event that fits into
their objectives of sharing valuable
information with a valuable
audience. You will find a number
of those sponsors throughout the
pages of this edition. I hope you
will support them as they help
us to deliver a quality conference
experience.

At the end of 2011 I sent out a
request for content submissions
to the community and received
hundreds of responses! These
individuals have made it clear
they want to share their opinions
and expertise with you. It is
a testament to the quality of
individual in our community.

Some of the quality individuals
featured in this edition are
Michael Larson and Albert
Gareev with “Using CRUMBS
to Evaluate Automation”;
Dale Brenneman authored
“Intentionally Avoiding Unintended
Side Effects Using Observation
Driven Testing with Test Driven
Development”; Brian Noggle
discusses the pros of hiring
Testers from outside IT in
“Cast Your Eyes Afield”; David
Borcherding tells us “A Tale of
Two Testers”; Jim Hazen lays out
the things Tester’s should consider
when utilizing automation in
“Think You’re Done?”; Wayne
Ariola shares some great advice

in “Database Virtualization”;
Matt Angerer tells us why we
should “Never Be Satisfied”;
and last but not least Matt
Heusser interviews Mike Lyles,
QA Program Manager for Lowe’s
Companies Inc. in “Ask The
Tester.” Thanks go out to every one
of these industry professionals.

Content is King in any industry,
and we have been doing our
best to bring it to you not just
in our publications but at our
conferences and in our Online
Summit education series. You
have really embraced the Online

Summit series where we have
taken on some timely and relevant
topics like Automation Testing,
Performance Testing, and Agile
Transistions to name a few.
Again, we are using highly
regarded members of the STP
community to deliver these online
educational presentations to you.
These presenters are some of the
most respected in the industry and
we thank them for trusting us
to deliver their content to the
testing community.

Software Test Professionals is
a launching ground and delivery
organization for the best talent in
the testing community. There is no
secret to our success. Our success
is helping you to succeed.

The Software Testing community
gets more important with every
new technological advance in the
market place. Together we can
continue to share the latest and
greatest with each other. This
edition of ST&QA is an example
of that commitment. I hope
you agree!

I also hope to see you in
New Orleans!

RichHand

Director of Membership & Publications

“ �There is no secret	
to our success.	
Our success is	
helping you to	
succeed.” Richhand

Richhand

Preparing for the conference
in New Orleans...

 | w w w . s o f t w a r e t e s t p r o . c o m6 V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2

followthe | crumbs

Follow the

Follow the

to Evaluate Automation

to Evaluate Automation

 W
hen we were last
together, we took on
the topic of deciding
if Automation was
something that we

wanted to pursue, and what we
might want to consider before we
made that death-defying leap.
We decided to come to TERMS
with it all [see ST&QA Issue
January 2012 (Vol. 8 No. 6) for
previous discussion], and yes,
we have committed to taking on
an Automation project for our
respective hypothetical company.

So let’s rejoin the dialogue. It
is a few months later. We’ve been
actively plugging away. Screens
fly by. APIs get exercised. Logs
get made, parsed, and analyzed.
Reports are sent to the important
parties. Everything’s great... well,
at least we think it is. In the back
of our minds though there’s that
nagging worry. Are we addressing
what we set out to do? We had
the best of intentions going in,
and we certainly used the TERMS

heuristic to decide if it was worth
doing, but what now? How do
we know that we are applying
the best efforts in the most
important areas? Am I actively
pursuing a winning strategy, or
have I succumbed to the latest in
“automation snake oil”(1)? To help
shine a light on this, I decided to
see if Albert would be interested
in helping me examine this
once again.

MICHAEL: So Albert, here we
are a few months later, and we’ve
spent several weeks, a fair chunk
of money, and a lot of sweat equity
to try to get into an automation
groove. Some things feel really
solid, but others feel, well, less
focused. I know that the last
time we talked we discussed a
mnemonic called TERMS that
helped us know if we were ready
to actually get started with an
automation project. How do we
gauge our progress after we
are underway?

ALBERT: Well, a lot of this comes
down to our expectations and what
we hope to have our automation
efforts do. TERMS gives us a good
idea as to what we need to do to get
the process started and make sure
we have identified a good candidate
for automation. Is that everything
we need to know? Of course not,
it’s just a list of characteristics
to help us. However, there are a
number of questions and thoughts
we should be applying after we
have gotten our automation project
underway. As you might expect, I
have an acronym for it as well. I call
it “following the CRUMBS,” where
CRUMBS makes up the attributes
and questions we want to ask.
Another purpose for the acronym is
to remind us of the secondary role
of automation in testing. If you rely
on automation and abandon testing
– “crumbs” is all you will get.

MICHAEL: All right, once again,
I’m intrigued. What does CRUMBS
stand for?

A Follow Up Dialogue
Between Michael Larsen

and Albert Gareev

V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2 7

CC

followthe | crumbs

�Confirmation, Coverage Criteria,
and Complexity

ALBERT: Let’s start with the “C.” The C stands for
“Confirmation, Coverage Criteria and Complexity.”
Let’s take a step back and consider what our aim is.
We started out with manual test scripts that we were
running. What expectation did using those manual
test scripts intend to confirm? Were our automated
scripts able to confirm them? If the answer is Yes, then
we are already off to a good start. If not, we might want
to step back and evaluate what we are doing.

MICHAEL: You mentioned Coverage in that list. I’m
assuming that the goal of having coverage as one
of the criteria is to have the machines run a larger
number of scripts in a faster manner than we could
ever run manually. Likewise, I would assume that our
goal is to make sure we are gaining coverage with our
automated test scripts.

ALBERT: Well, that’s part of it. We have to take into
account that human beings, even with manual test
scripts will vary their approach from time to time. They
might get bored, or distracted, or some other factor
comes into play, but humans are not good at doing
the exact same thing over and over. Thus, the odds of
getting interesting behavior from a human tester will
be higher than automated test steps, which really do
copy the exact same steps over and over as many times
as you tell them to. With human testers, we may learn
new details because of these variations. With automated
scripts, they are not likely to tell us anything new.

MICHAEL: It also seems to me that we have to take
into account whether or not automation simplifies our
testing process, or if it adds complexity to our testing.
We commonly consider having automation to do the
“tedious” part of testing and leave us open to focus
on the more “interesting” aspects. That’s the idea in
any event, but it begs the question; is our automation
making our testing process simpler or more complex?

Risk, Robustness, and Reliability

ALBERT: The truth is, automation adds complexity
to any testing project, whether it is intended or not.
Because of this, we turn to the next letter in our
acronym, R, which stands for “Risk, Robustness and
Reliability.” Let’s take a look at Risk first. What are
the product’s risks that automated test execution
addressed well? At the same time, what risks were
not addressed well? Once you have identified them,

can you quickly incorporate within the automation
suite verification for new risks that are discovered
on a regular basis?

MICHAEL: That makes sense. It seems that, if you are
not keeping up to date with the risks that need to be
mitigated, the tests we develop will give us a false sense
of security. On the current project I am working on,
changes in the features and a rewrite of certain aspects
of the user interaction means that the flow of the
application has changed, yet the suite of scripts that I
have still runs without issue. Were I to take that at face
value, I might believe that everything was fine, while
missing the changes that were recently implemented.

ALBERT: That is a real problem with many test
suites. We often make tests simple so that we can
focus on key areas, but we also run the risk of having
tests that underperform and give us what would be
termed “near misses.” While we have passing tests,
there are areas that have changed that we are not
covering. This leads us to the Robust part of the
R; How robust are the automated testing scripts?
Do the automation tools provide reliable object
recognition and interaction? Also, think about what
happens when we do have changes and everything
stops working. Are you familiar with that?

MICHAEL: Oh, definitely! I have had plenty of
experiences where I’ve had to babysit scripts as they
have gone through feature enhancements and story
submission, and whereas just a week ago, everything
worked, now I have a 20% failure rate. Sometimes
it feels like I have to look for workarounds, or I find
myself putting together a dedicated and simplified
environment so I can take out as many conflicting
variables as possible.

ALBERT: Sure, that’s a logical thing to do, but ask
yourself this: If you have simplified your environment,
and taken out a lot of the aspects that are similar to
what a user might have on their system, how valid are
your tests? If all of your tests are running a simplified,
let’s say “sanitized” environment, sure, you eliminate
a lot of the complexity that might interfere with your
test scripts completing successfully. You also reduce
your chances of actually catching problems that might
impact your customers.

MICHAEL: A very good point. This is often an area
I point to and say, “If we have to run on such sanitized
and overly clean environments, is it really worth it to
run in this state? Wouldn’t it be much more valuable
to run these tests manually on more realistic customer
environments?” I think, if I have the time to do it
manually, under these circumstances, I might
actually choose to.

RR

 | w w w . s o f t w a r e t e s t p r o . c o m8 V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2

followthe | crumbs

Usefulness and Usability

ALBERT: Of course, that’s totally natural. This brings
us to the “U” part of the acronym, which is “Usefulness
and Usability.” Automation is not as helpful if it
makes us feel that we need to run the tests over again
or manually to “make sure.” Yes, there will be times
when we will need to do that, so we want to make sure
to focus our efforts towards areas that are the most
useful to our testers.

MICHAEL: OK, so let me shift the conversation a little
bit here. So we are able to run a large number of tests.
That’s great, but we also ultimately have to share the
results of this information. That’s just as much a part
of the automation puzzle as is coding up the steps
necessary to automate the process, right?

ALBERT: It certainly is. While the test automation
itself is important, and can be a tremendous time
saver, if we then have to spend the time we saved in
massaging data into reports for our stakeholders,
we are missing an important part of the benefit of
automation. We always want to consider what is most
important to the stakeholders. If the fact that the tests
were run and that they passed is enough, that’s one
thing. If they want to have a specific report showing
what was tested and what passed and failed, then that
makes for a much greater need for developing a report
to show the test results. That has to be worked into
the overall automation efforts.

MICHAEL: It seems to me that there are also aspects
of how easy it is to run and use the automated scripts.
Are we talking about running a simple command and
triggering the whole process, or do we need to create
very specific suite files with explicit parameters and
then run them individually? Also, is it OK to be “close
to the metal” with our scripts, or do we want to be able
to easily represent to our stakeholders what is being
performed with each test run. For example, a report
for a tool like xUnit is going to look very different
compared to the output from a Cucumber script.

Maintainability and Manual Effort

ALBERT: These are all challenges that every tester
who works with automation faces when they are
knee deep in a testing project. It seems that much of
what we think is good enough at first gets expanded
upon and requires ever more effort to keep under
control. This is normal and expected, but it still takes
a significant amount of time. This brings us to M,
which stands for “Maintainability and Manual Effort.”
Think about each time we need to run a test suite. Do
changes in the test setup require code changes? How
about changes in the application’s GUI? Do we need
to modify our tests? If we do, are these changes code
change related? Are there data changes involved?

MICHAEL: In my experience, it seems to be that “both”
would be the right answer? Changes in page layout
or in displayed items on the page are relatively easy.
When I have to actually rewrite tests because we
have changed business logic or our workflow, that’s
when things get really interesting. There is often a big
push needed to be able to change scripts because the
developers have changed behavior of the application in
a significant enough manner.

ALBERT: That’s not as frequent an issue, but no
doubt, it does happen. We also have to think about how
soon our automation scripts will need to be run once
the build is deployed. This is common in Continuous
Integration environments. Your scripts may not be run
as often or as regularly, but overall, that should be the
goal, to be able to run our scripts as soon as the code
is deployed on our respective machines.

MICHAEL: My biggest fear is that I’ll be caught in the
middle of a test cycle and there’s some big change,
and in that process, there’s a number of modifications
that would be necessary for the testing framework to
effectively maintain our automation efforts. We’d have
to consider what it takes to bring everything back to
running as it was prior to the changes. It could make
for a considerable manual effort to bring everything

UU MM

Automation CRUMBS: Heuristic-based evaluation criteria

Confirmation

Complexity

Coverage Criteria

Risk

Reliability

Robustness

Usefulness

Usability

Maintainability

Manual Effort

Basis

Bias

Span

Security

Separation

C R U M B S

V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2 9

followthe | crumbs

back into line. If we have a dedicated team that
handles debugging/fixing/updating automation scripts
on a regular basis, I feel a lot more comfortable than if
these changes are left entirely up to me and only me.

Basis and Bias

ALBERT: These are all important considerations,
and they need to be evaluated from time to time.
This brings us to our next part of the Acronym, the
B, for “Basis and Bias.” When we examine how well
an automation project is working, we do so with
certain “lenses” that will often color the results that
we see. We need to ask who and what are the sources
of information for answering questions of these
projects. What’s more, do we have the input of all the
stakeholders involved in reviewing and commenting
on this study? Who prepared the analysis? Was it the
testers? Was it the stakeholders? Was it an outsourced
team? All of these will, again, color our outlook.

Span, Separation, and Security

MICHAEL: This feels like a lot to have to take in. I get
that there are many aspects that we need to focus on,
but my concern is for projects like this to “have legs,”
so to speak. It’s one thing to develop an automation
scheme, but most of us want to make sure that we
are making something that will last for the long haul.
What can we do to help us see to it that we have that
ability in these projects?

ALBERT: Yes, you’re not the only one thinking about
this. The S in CRUMBS stands for “Span, Separation
and Security.” The questions we need to ask fit along
these lines. How long do we plan to be using these
automation scripts? Will this framework be reused for
other projects? If we do use these for other projects,
how much of the underlying verification logic will be
transferable, or will we need to modify this to work for
other projects?

Completely outside of the framework is the test data.
It may also have a “shelf life” that we need to be aware
of. We also need to consider how well the automation
was integrated within our existing testing process.
Did automation remove a bottleneck, or did it become
a bottleneck unto itself? Finally, we have to consider
Security whenever looking at automation. What do
we do when we have to ask to have our company’s
security policy modified to allow us to run these tests?
That opens up the organization to new risks, and we
have to mitigate those risks.

Taking on an automation project is a lot of work,
and there are a lot of areas that we have to consider
when we approach these projects. Each of the steps
described will give us more information and insights
into our efforts and allow us to adjust and change
course if necessary. It’s our goal to help give you,
the tester, the ability to look at your projects and
determine which CRUMBS you should follow to get
the best results out of your automation efforts. Most
important of all, of course, is that, with all of this
automation, don’t forget to do real testing, or as
Albert said, CRUMBS is all you will get.

About The Authors 				

Michael Larsen is a lone tester with SideReel.com in San Francisco, CA.
He is a brown belt in the Miagi-do School of Software, an instructor with
the Association for Software Testing, facilitator for Weekend Testing Americas
and the producer of Software Test Professionals “This Week in Software
Testing” podcast. He can be found on Twitter at @mkltesthead and blogs
at http://mkl-testhead.blogspot.com.

Albert Gareev is a dedicated testing and test automation professional,
technical lead and a hands-on consultant. He combines passion for testing
as investigation and learning with an automation approach helping to reach
observation levels beyond “naked eye and hand” in complex, large-scale
systems. Albert frequently writes in his blog (http://automation-beyond.com/)
and occasionally tweets as @AGareev.

BB

SS

V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2

V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2 11

taleof two | testers

 W
hen it comes to
stress and boundary
testing, there are
the best of practices
and the worst of

practices. Take Chuck and Sid,
for example. Chuck is a QA tester
for Evremonde Softworks. Sid does
QA testing for Stryverware, one
of Evremonde’s competitors.

Recently, both companies
received support calls from irate
customers who had lost critical
data. The Evremonde product
crashed when it ran out of disk
space while trying to save, while
the Stryverware product failed
after a user accidentally entered
an astronomically large number
in a field.

Management demanded
improvements to stress and
boundary testing for the next
release. For Sid, this meant long
hours of setting up dozens of
virtual machines. Chuck, on the
other hand, got to try a new tool
that made the task much easier.

The Worst of Times
Whether you’re in development
or QA, stress and boundary tests
probably aren’t things you enjoy.

Nevertheless, they are critical to the
development process, because stress
and boundary errors often occur at
the worst possible times—when the
application is trying to save data.

Contrary to popular belief, stress
and boundary tests aren’t just for
web applications. The evolution
of computing from desktop
machines to ultrabooks, tablets,
and smart phones makes stress
and boundary testing even more
important, because developers
often program with a workstation
mentality, thinking the end user
will use hardware similar to
their own. Unless smaller, less
powerful computers are specifically
documented in the requirements,
these devices may not be on
development’s radar.

Often, then, stress and boundary
tests fill the gap between what’s in
the requirements documentation
and how the application needs to
perform under real-life stresses.
But setting up all of those virtual
environments to test every fault
condition and boundary error
can be such a pain, right? Not
necessarily. Let’s compare Sid’s
traditional approach to Chuck’s
new testing tool.

A Tale of
Two Testers:
Far, Far Better Stress
Tests Than You Have
Ever Known

 	
by DavidBorcherding

 The evolution

of computing from

desktop machines to

ultrabooks, tablets, and

smart phones makes

stress and boundary

testing even more

important.

DavidBorcherding

 | w w w . s o f t w a r e t e s t p r o . c o m12

taleof two | testers

Virtual Machines Ad Infinitum
Sid began by identifying all the
stresses he needed to test. The
first and obvious stress was the
boundary error that caused the
customer’s crash. He also listed
boundary values for all other
fields, as well as low memory,
low disk space, and sudden
connection loss.

Unfortunately, no one knew
exactly what the boundaries were
or how the application should
behave when those boundaries
were hit. The product manager
said, “Everything should degrade
gracefully with limited resources.”
The lead developer said, “You need
enough memory and disk space for
all the data. And maybe some temp
files. And the cache. I think that’s
everything.” So Sid made his best
guesses and moved on.

With a list of tests in hand, Sid
began setting up virtual machines
for each test. For the low disk
space test, he set up a virtual
machine with three megabytes
left, one with two megabytes
remaining, and one with one
megabyte left. When he tried to
install the application on the one-
megabyte machine, he discovered
that he needed more free space to
complete the installation.

Likewise, when Sid created the
limited memory test, he found he
didn’t have enough memory in the
virtual environment to run both the
app and his profiling and leak tool
simultaneously. As a result, he had
no idea where the application was
crashing, which resources weren’t
being released, or any other useful
data to help development. This
led to several rounds of everyone’s
favorite testing game, “Well, works
on my machine.”

Sid had just about completed
all the testing when he got word
from Development that they had
added new functionality to the
app. Forced to perform all of the
stress and boundary tests again,
Sid muttered curses under his
breath and began to set up a
whole new bank of virtual
machines.

Chuck vs. the Stress Test
Over at Evremonde, Chuck faced
a similar situation. Like Sid, he
began by listing all the stresses he
needed to test, including the disk
space problem that caused the
failure for the customer. Although
his list looked similar to Sid’s,
Chuck approached the testing
much differently.

Instead of creating dozens of
virtual environments, Chuck set
up the tests using QA Wizard Pro,
an automated testing tool. When
testing the disk space limits, for
example, Chuck made the test
application think it only had one
megabyte of disk space free by
setting that as a limitation in the
tool. When the app worked, Chuck
reset the limit to half a megabyte
and ran the test again. That also
worked, but when he set the limit
at 250k, the app failed. Chuck was
then able to give the developer the
exact file size and free disk space
that caused a crash.

Because Chuck ran the tests
in a simulated environment and
not in a virtual machine, plenty
of memory remained to run a
disk-logging tool that recorded
which files were (and were not)
created. Chuck sent this report
to Development, too.

The tool also made it possible for
Chuck to reuse existing functional
tests as stress and boundary tests.

Likewise, as the app grew in later
iterations, Chuck easily re-ran the
tests by just changing the settings
in his tool.

A Far, Far Better Rest
Because he didn’t have to create
virtual machines, Chuck had
enough time to test more of the
application before the release
date, resulting in a higher quality
product and happier customers.

Unfortunately, Sid wasted so
much time setting up virtual
machines that he couldn’t
complete all of the testing needed
before the release date. As a result,
the application crashed again, and
the fed-up customer decided to
abandon Stryverware.

While Sid’s troubles with stress
testing keep him up at night,
QA Wizard Pro gives Chuck a
far, far better rest than he has
ever known.

About The Author		 	

David Borcherding is the Marketing
Communications Specialist for Seapine
Software. He helps spread the word about
Seapine Software’s products and services.
Seapine develops application lifecycle
management software for a variety of industries,
including health care, financial services, utilities
and game development. Our products include
TestTrack, Surround SCM, and QA Wizard Pro.
Check us out at www.seapine.com.

 Because Chuck didn’t have to create virtual
 machines, he had enough time to test more of the
 application before the release date, resulting in a
 higher quality product and happier customers.

 | w w w . s o f t w a r e t e s t p r o . c o m14 V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2

Database | virtualization

 What is Application-Behavior Virtualization (ABV)?

 Application-Behavior Virtualization is a focused and efficient strategy
for eliminating the system and environment constraints that impede
the team’s ability to test their heterogeneous component-based
applications. Instead of trying to virtualize the complete dependent

component, you virtualize only the specific transactions that developers and
testers actually need to exercise as they work on their particular applications,
components, or scenarios.

For instance, instead of virtualizing an entire database (and performing all
associated test data management as well as setting up the database for each test
session), you monitor how the application interacts with the database, then you
virtualize the related database behavior (the queries that are passed to the database,
the corresponding result sets that are returned, and so forth). This can then be
accessed and adjusted as needed for different development and test scenarios.

Whether you need to rapidly exercise a new/evolving software component or
performance test an application, you’ll likely be dealing with interconnected
systems that are constrained by the need to stand-up a database instance.
A properly-configured database is a valuable and sometimes scarce resource.
It slows down under load. It needs to be continuously available. Moreover,
multiple systems may depend on the same database, thus limiting flexibility
and increasing the time needed to configure it. To enable the team to

efficiently develop and test without
the constraints associated with
a dependent database, you can
leverage Application-Behavior
Virtualization to capture the
necessary scope of database calls
and deploy a virtualized instance
of those calls—totally cutting your
dependency on the actual database.

ABV for Databases
Application-Behavior Virtualization
allows for traffic to be recorded
over a real database connection so
that the same data will be available
to be replayed later. This type of
virtualization is usually achieved
using a proxy in the interface between
software system and database (you
can also use a modeling tool to
achieve the same result).

The proxy starts by recording
requests and corresponding data
responses. That recorded data will be
used when the real database needs
to be isolated from the load and
data of the software system. At that
point, the proxy stops forwarding the
requests to the real database and
instead looks up a virtual response.
The software system is unable to tell
the difference as long as sufficient
sample data was recorded and some
dynamic logic was implemented.
The real database becomes isolated
from this software system under
development or test. At any time
when development work and testing
is finished, the proxy can switch
back to forwarding traffic to the real
database instance.

The overhead of database
virtualization is much less than
setting up a second database for
testing and development. There is no
need to install and maintain another
database. No two databases need
to be synchronized. And the proxy
can even switch between virtualized
responses and forwarding to the
real database without requiring any
software systems to be restarted.

Leveraging Application-Behavior
Virtualization to emulate database
transactions removes the bottleneck
of development, QA, and production
teams scheduling their work around
the other teams’ activities. Being able
to disconnect from a staged (or even
a production) database without the
system working with different data
or even restarting is a huge boost
to productivity.

Standing up a development or test environment for
incrementally exercising the latest code modifications is a
common roadblock to developers & testers. Application-
Behavior Virtualization (ABV) offers a new alternative.
Development and testing teams can capture the desired
transactions (or behavior) of dependent systems and deploy a
virtualized instance of the transaction that mimics the interaction of
the constrained component—removing the traditional roadblocks
associated with shared or inaccessible test environments.

———————— ———
by Wayneariola

dataBase
virtualization
for Development and Test

dataBasE

V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2 15

Database | virtualization

How Does ABV Work?
To start, you designate which
database calls you want to virtualize,
then—as the application is exercised—
the behavior of the associated
transactions, messages, services,
etc. is captured in what we call a
“virtual asset.” You can then configure
this virtual asset by configuring its
conditional behavior, performance
criteria, and test data. This virtual
asset can then emulate the actual
behavior of the dependent system
from that point forward—even if the
“real” database is no longer accessible
for development and testing.

The Application-Behavior
Virtualization tool can record
database queries, along with their
corresponding results data, and
use that to virtualize the data
connection. This enables you to
decouple your application from data
base dependencies while working on
testing and development activities.
Such decoupling alleviates challenges
associated with test data management
challenges and multiple teams
competing over the same database
assets—which can often introduce
complexity and instability into the
environment. Furthermore, being able
to virtualize database connections
allows load tests to scale better in
such environments—without requiring
you to allocate or license additional
database instances for such purposes.

There are three main steps
involved in virtualizing database
behavior:

z �Capturing queries that are
passed to the database and
the result sets returned.

z �Creating a virtual asset emulates
the desired behavior.

z �Deploying the virtual asset.

The test data that is associated with
these virtual assets eliminates the
need for the dependent database and
the need to configure and manage
the dependent database that, if
shared, usually gets corrupted.

Hardware and OS Virtualization
Lowers Cost & Increases Access –
Yet Does not Solve the Problem
In an attempt to provide all of
the necessary team members
ubiquitous access to realistic dev/test
environments, many organizations
have turned to hardware and OS
virtualization. Virtualizing the core
test foundations—specific operating
systems, configurations, platforms,
etc.— has been a tremendous step
forward for dev/test environment
management. This virtualization
provides considerable freedom from
the live system, simultaneously
reducing infrastructure costs and
increasing access to certain types of
systems. Moreover, leveraging the
cloud in concert with virtualization
provides a nearly unlimited bandwidth
for scaling dependent systems.

Nevertheless, in terms of
development or test environments,
some significant gaps remain. First
of all, some assets cannot be easily
virtualized. For example, it is often
unfeasible to leverage hardware or
OS virtualization technology for large
mainframe applications, third-party
applications, or large ERPs.

Moreover, even when virtualization
can be completed, you still need
to configure and manage each
one of those applications on top
of the virtualized stack. Managing
and maintaining the appropriate
configuration and data integrity for
all the dependent systems remains
an ominous and time-consuming
task. It is also a task that you will
need some outside help with—
you will inevitably be relying on
other groups, such as operations
or DevOps, to assist with at least
certain aspects of the environment
configuration and management.

Conclusion
Application-Behavior Virtualization
reduces this configuration and data
management overhead by enabling
the developer or tester to rapidly
isolate and virtualize just the behavior
of the specific dependent components
that they need to exercise in order
to complete their end-to-end
transactions. Rather than virtualizing
entire systems, you virtualize
only specific slices of dependent
behavior critical to the execution
of development and testing tasks.

 It is completely feasible to use the
cloud for scalability with Application-
Behavior Virtualization. Nevertheless,
since you’re virtualizing only the
specific behavior involved in dev/test
transactions (not entire systems), the
scope of what’s being virtualized is
diminished… and so is the need for
significant incremental scalability.

Even after the initial provisioning,
these virtual assets are still easily
modifiable and reusable to assist you
in various dev/test scenarios. For
instance, one of your test scenarios
might access a particular virtual
asset that applies a certain set of
conditional responses. You can
instantly construct an additional
virtual asset that inherits those
original conditions, then you can
adjust them as needed to meet the
needs of a similar test scenario.

About The Author		 	

Wayne Ariola leads the development and
execution of Parasoft’s long-term strategy. He
leverages customer input and fosters partnerships
with industry leaders to ensure that Parasoft
solutions continuously evolve to support the ever-
changing complexities of real-world business
processes and systems. Ariola has contributed to
the design of core Parasoft technologies and has
been awarded several patents for his inventions.

 | w w w . s o f t w a r e t e s t p r o . c o m16

neverbe | satisfied

 It
seems like yesterday when I heard my high school football coach bellow out, “Never be
satisfied men! The moment you become satisfied with your performance on the field is
the moment you stop improving.” That was over 15 years ago and the echoes of that
statement are forever etched into my central nervous system. In my humble opinion, I was
lucky enough to be influenced both on the grid iron and off by some of the best mentors

and coaches that the game of life can bring. With that said, I am fairly confident that Coach Ballard
didn’t realize the impact that his statement would have on me or the organizational processes I
would touch in years to come. On that 100 degree August afternoon, he was trying to do more than
simply motivate his football players to perform better. Although motivational techniques are useful
in getting your Software Quality Team over the last hump of testing before go-live — it won’t ensure
long-term organizational success. My football coach understood that in order to achieve success
on the football field, his statements had to provoke much deeper consideration among his more
mindful players. His statements had to truly shake each of his players’ central nervous system to the
point where improvement was a “must have” requirement every single day we stepped foot onto that
football practice field. We didn’t have to consciously think about improving – we sought out ways to
improve our game and we naturally identified opportunities to improve the smallest things in how we
stepped up for a particular play or caught the ball for that matter. As a result, we went from 2 and
7 my junior year to 6 and 3 my senior year. Even though we experienced loss, the team culture was
fundamentally altered by changing our focal point of never being satisfied.

SatisfiedNever Be

 Never be satisfied! The moment you become satisfied with
your performance is the moment you stop improving!

Coachballard

————————————
by MattAngerer

V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2 17

neverbe | satisfied

A
s an SQA Leader, Test
Manager, or Tester within
your organization – have
you seriously taken the
time to identify areas you

can improve upon? Perhaps the test
management tools you’ve been using
the last 5 years need a massive re-
haul. Or maybe you need to shake
things up a little bit by moving
people around within your team.
Just because you’ve done something
one way for so long, does not mean
there isn’t room for improvement.
Don’t get stuck in the mindset of: “If
it ain’t broke, don’t fix it.” No matter
where you look, no matter what
process you think is working, there
is always room to improve and tweak
an existing process. If your brain is
conditioned to identify opportunities
of improvement, you will find them.
It’s called the reticular activating
system (RAS) and it’s an area of
the brain responsible for regulating
arousal and sleep-wake transitions.
Don’t believe me? Has anyone ever
painted a picture of someone’s
personality characteristics before you
met them? As you listen to someone
describe somebody else, your RAS is
collecting this information – the more
colorful the story that this person
tells of the other and the more
impressionable you are – the more
alive your RAS becomes. When you
meet this “person” finally, you will
automatically (yes, without conscious
thought) pull out cues that align
with what you’ve heard about this
individual. The same concept applies
to your ability as a software quality
professional to uncover opportunities
for improvement. If you listen to
the “wrong people” within your
organization or “follow the crowd”
in terms of thought, action, and
process – you could be focused on
the “wrong stuff” that leads you away
from software quality objectives.

A real-world example that will
help crystallize this concept for an
SQA professional comes from my
recent experience of leading a team
of testers that are operationally
responsible for regression testing a
Java application installed on a PC-
based device. The application was
architected, designed, developed
and rolled out in the late 90s. The
functionality of the software is stellar
as it relates to its pragmatic use by
the customers. Customers are very
satisfied and the company continues
to grow its market share with the
device. The software is highly stable,
easy to use, and continues to evolve
with new features and functionality.

All is good – the customer is happy
– why should we look for ways to
improve existing SQA processes?
Without belaboring the point, we
know why: never be satisfied.

As an SQA Leader, my mind
directed me to the team’s use of tools
to manage the regression testing
cycle of this Java application prior to
field testing. I asked myself the right
questions, which I think led me to
some good answers:

Q Although our customers are
happy today, is there anything

I can do as an SQA Leader to inject
business value into the systems
development lifecycle of this Java
application to make the customers
even “happier”?

A Since the number of software
defects found by the customer is

very low and customer satisfaction is
already sky high – what else could we
do? Perhaps the timeframe of having
the product in SQA could be critiqued
and improved upon.

Q Is the team fully utilizing the
set of tools made available to

them by the organization: HP Quality
Center and Microsoft SharePoint to
name a few.

A The team is utilizing HP Quality
Center as a glorified bug

tracking tool – but they are not
taking advantage of its full range of
capabilities. Defects are not linked
to test cases, and test cases are not
linked to requirements. Requirements
traceability is non-existent and
needs to be addressed. Additionally,
Microsoft SharePoint was being
utilized, but only at a surface level.
By expanding the use of SharePoint
to granulate a test schedule across
the decentralized testing team,
productivity among the testers would
improve and less downtime would
occur as a result of setup activities.

Q Are there other “test
management tools” available

that could improve software quality
while simultaneously shortening the
test execution time table?

AWith so many product platforms
& device configurations to

test against on this team, a tool
that allowed for simultaneous test
execution across various configurations
would immensely shorten the test
execution time table.

By evaluating product sheets,
sitting through demos, and talking to
sales representatives – we were able to
pilot and prove out a test management
product that dramatically shortened
the regression testing cycle timetable.
The new tool helped us to improve
manual testing by giving us the
ability to simultaneously execute test
scripts across 5 different product
configurations at once – known as
mirroring. The SQA testers were no
longer limited to testing against one
PC-based product at a time — they
could test the Java application from
one product while it simultaneously
(in real-time) mimicked the UI
actions across the 5 other product
configurations. Specific paths that
did not require manual intervention
were easily automated with the use
of macros. Our pilot program proved
to be successful – increasing the
velocity of our regression test suite
by nearly 500% per SQA Tester. The
improvement in this area allowed our
offshore team to focus more of their
efforts around exploratory testing to
uncover those pesky bugs that the
customer usually never finds, but
should be fixed because it’s the right
thing to do.

The moral of the story is simple:
don’t be a wallflower. Just because
the customer is satisfied today, you
shouldn’t rest on your laurels. The
competitive landscape is shifting by the
day – we have a responsibility as QA
professionals to continually evaluate
and implement tools that work best in
our organization. Regardless of your
vendor preference, you should find
tools that add business value to your
organization. Reducing the time it takes
to get a software product shipped is not
what many QA professionals want to
hear – it’s the unpopular thing to speak
or write about because we could test an
application until we’re blue in the face.
But if you can find a test management
tool that does just that while also
expanding test coverage – go for it!

Here’s to my high school football
coach. Sometimes a mindset is more
important than knowledge because it
will lead you to opportunities.

About The Author		 	

Matt Angerer spent nearly 10 years as a traveling
ERP (enterprise resource planning) and APS
(advanced planning systems) consultant. Matt has
managed and consulted in a broad range of areas,
including: supply chain planning, IV&V, software
training, test management, and systems integration.

V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2

GET A TESTING
RESULT YOUR
CEO WILL LOVE.

Your CEO will love you when you show them how
you can achieve an outstanding testing ROI with
ISTQB Software Tester Certifi cation.

With the average cost of a software defect in the range of
$4,000 – $5,000[1], if ISTQB Certifi cation helps your tester
eliminate even just one defect, the result is nothing less
than, well, loveable: an ROI of up to 2000%.

ISTQB Software Tester Certifi cation is the most widely
recognized and fastest-growing software tester
certifi cation in both the U.S. and the world. Discover how
ISTQB certifi cation can pay for itself in a matter of days:
That’s a testing result any CEO will love.

[1] Capers Jones, “A Short History Of The Cost Per Defect Metric”, Randall Rice, “The Value of ISTQB Certifi cation”

Learn more
now at

www.astqb.org

YOUR
LOVE.

Your CEO will love you when you show them how
you can achieve an outstanding testing ROI with

With the average cost of a software defect in the range of
, if ISTQB Certifi cation helps your tester

eliminate even just one defect, the result is nothing less
than, well, loveable: an ROI of up to 2000%.

ISTQB Software Tester Certifi cation is the most widely
recognized and fastest-growing software tester
certifi cation in both the U.S. and the world. Discover how
ISTQB certifi cation can pay for itself in a matter of days:

Want an even better ROI?
Take advantage of our new Volume Purchase Program.

V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2 19

 ODT is complementary to, yet not
dependent on, the widely adopted
Test-Driven Development (TDD).

Ron Jeffries observed that TDD is an excellent
methodology for developing “clean code that works.”
Its many strengths include the ability to create code
that does only what you want and to create a thorough
set of automated tests. However, by itself, TDD is
incomplete as a coding and testing methodology
because of the fact that it creates code that does only
what you want without taking into account unintended
side effects. ODT fills that void, using automated tools
to test the behavior of code and providing developers
with actionable observations about possible
unintended side effects.

Test-Driven Development (TDD)
TDD is a very good technique for developing new
code and maintaining existing code. It has been
called “test-first programming” and “code unit tests
first” development. It results in not only a complete
set of automated tests at the “unit” level (with high
code coverage) that protect your investment when
each change is made, but also a code base that has
been thoroughly tested step-by-step as it was being
developed. These results are in contrast to the results
of the all too common “code-first test-as-long-as-you-
have-time-left-before-your-deadline” development
techniques, which can result in incomplete test sets
and limited testing cycles.

Let us assume that requirements for implementation
are in a form that we will generically call Use Cases,
whether formal or informal, and even if details are
negotiable or TBD. Then, a simplified view of TDD
is a process that repeatedly, in small increments,
performs the following steps:

• �Red Bar – Implement test(s) based on a Use Case
or a developer observation of a requirement, and
execute the set of tests, which will result in test
failure(s), i.e., a Red Bar test result indicator.

• �Green Bar – Implement code until the tests execute
correctly, i.e., a Green Bar test result indicator.

• �Refactor – Change code to eliminate the duplication
created by focusing on getting tests to work quickly,
which also reduces dependencies.

————————————
by DaleBrenneman

Intentionally
Avoiding Unintended
Side Effects Using
Observation Driven
Testing with Test
Driven Development

Executive Summary
Observation-Driven Testing (ODT)
is a development methodology for
organizations intent on maximizing
the effectiveness of development
teams while also maximizing
code quality.

 About The Author				

Dale Brenneman is Vice President of Technology at Agitar Technologies,
Inc. and has been in the software development industry for over 30 years.
He has served as a manager of development, testing, services, and support
organizations, and as a programmer, tester, quality assurance specialist,
trainer, and consultant. Mr. Brenneman has worked for several federal
government agencies, for a government contractor at NASA, and for
commercial software vendors. He has taught training courses and
presented at software industry events.

ODTwith | TDD

 | w w w . s o f t w a r e t e s t p r o . c o m20 V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2

ODTwith | TDD

TDD performs implementation from a different angle
than architecture-driven development. Architecture-
driven development first focuses on defining designs that
are clean, and often later making changes when specific
cases reveal that changes are needed to make the code
work. Alternatively, TDD first focuses on implementing
code that works, and sometimes later making changes
when general cases reveal that changes are needed to
make the code meet requirements. Note that TDD can be
used successfully within various methodologies, including
but not limited to those based on Agile methods such as
eXtreme Programming (XP) and Scrum.

TDD is successful due to the human brain power that
repeatedly performs its very focused steps, and that brings in
ideas that add thoroughness and reduce duplication. There
is limited automation in the process other than automated
test execution/reporting and coding tools/IDEs. There is no
automation to generate tests for code that doesn’t exist.

TDD’s strengths and weaknesses relative to unintended
code behavior are:

Strengths:
• ��Defines code requirements more accurately

than writing code-first.
• ��Allows fast code writing through the use of

refactoring tools after tests are written.
• ��Avoids code bloat and feature creep by requiring

testability for all implemented features.

Weaknesses:
• ��Tests/requirements developed before product

implementation tend to emphasize only sunny
day/success scenarios.

• ��Tests cannot be automatically generated.
• ��Tests do not cover cases that developers do not

think of, which may include some general cases
encompassing the interactions of many code units.

Observation-Driven Testing (ODT)
ODT is a good technique for identifying code behavior that is
unexpected. An automated tool can test code by executing it
in many ways based on the contents of the code units (e.g.,
Java methods) and their relationships, and then provide its
observations about code behavior to the developer for review.
This exploratory testing of code has been termed “agitation.”

In order to find these observations, each code unit is
executed multiple times with various input values using
exploratory techniques. Then, the developer is presented
with normal and exception outcomes and observations
in the form of code expressions, and with code coverage
obtained during this testing. This gives several different
perspectives on the code’s actual behavior that can be used
for review and validation. After adjusting code so it works as
expected and has the desired number of constraints to be
highly maintainable in the future, the developer can promote
remaining observation expressions to test points.

In addition to executing available unit tests, the
ODT process should be applied to small increments of
development. A simplified view of ODT is a process that
repeatedly, for small increments of code that might be
checked in after a small amount of work (maybe an hour
to a day’s worth of effort), performs the following steps:

• ��Agitate Code – Request an automated tool to perform
exploratory testing and provide its observations; and
apply techniques to improve code coverage where code
constrains coverage.

• ��Adjust Code – Until no Unexpected Observations exist,
adjust code to correct the behavior and rerun your
automated tests, then re-agitate.

• ��Add Test Points – For Expected Observations, promote
them to test points to help constrain the code behavior
as known by tests, creating additional expressions, if
desired, to include as test points.

ODT’s strengths and weaknesses relative to unintended
code behavior are:

Strengths:
• ��Points out unintended behavior for which a developer

would usually not write tests.
• ��Promotes good code construction by pointing out code

that is difficult to test, prompting early refactoring.
• ��Provides an easy mechanism to add test points from

observations of concrete behaviors.

Weaknesses:
• ��Code must exist before observations are made.
• ��Automated testing is for actual rather than intended

code behavior.

How Are TDD and ODT Complementary?
TDD has great value as a software development process but can be incomplete in terms of the creation of code that
does what you want without unintended side effects. ODT uses automated tools to test the behavior of code and provide
actionable observations about possible unintended side effects. Therefore, because ODT is strong where TDD is weak,
ODT is an excellent complement to TDD as part of your development processes. Using ODT with your TDD will reduce
defects caused by unintended code behavior. The following table summarizes how ODT complements TDD.

TDD ODT

Goal Make sure code does only what you want Make sure code does what you want without unintended
side effects

What is performed during
development and testing?

After requirements in some form exist (formal or informal),
automated tests are created. Then code is created
to cause failing tests to pass. Then code is refactored
to reduce duplication (improving testability
and maintainability).

After code exists, code is analyzed by automation to
identify observations about behavior that may point out
either defects or needs to specify further tests; then code
may be changed, further tests created, assertions made,
or code refactored.

Focus in reducing defects Reduces opportunities for untested behaviors, relative to
requirements and code coverage

Reduces opportunities for untested behaviors, relative
to code base’s behavior

Strengths in avoiding code defects
from unintended side effects

Specific cases, based on known requirement General cases, based on code behavior

V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2 21

ODTwith | TDD

ODT Tools for Java Projects
A new generation of automated tools can support
an ODT process for Java. These tools use exploratory
testing techniques to execute code and provide actionable
behavior information to the developer. The developer
then can review each observation and determine
whether to change code (to fix unintended behavior),
create additional tests, promote observations to
assertions, or refactor code for improved testability.
These tools are meant to be used during code
development to reduce defects due to unintended
code behavior. Only an automated tool can perform
such a thorough analysis of behaviors.

ODT tools are also available to support legacy code
development. Some projects, such as those that have
not used TDD, may not currently have a complete set
of unit tests (i.e., with high level of code coverage across
the project). Most organizations cannot find resources
to go back and manually create a complete set of unit
tests, even though they know these tests would have
great value in reducing defects going forward. Having a
complete set of characterization tests gives confidence
to make changes to existing code with minimized fear of
regressions. ODT tools can be used to create such a set
of tests. They provide a set of automatically-generated,
passing tests with 80% or better coverage, using
exploratory testing techniques plus significant automatic
mocking technologies. Easy to use techniques can be
used to improve coverage levels from there if desired.
The process is simple: automatically generate passing
tests, make code changes, run tests, inspect test failures,
account for unexpected failures and automatically
re-generate tests so they are available for the next
code change.

One of the significant obstacles to successful TDD
implementation is the amount of effort required to
create harnesses for testing. On the one hand, this
encourages development designs that make components
more easily testable in isolation, because introducing
more dependencies increases the testing effort. However,
since the test is written before much of the system
is implemented, there are inevitable cases where the
developer will have to implement interfaces, stubs, mocks,
etc. for the integration points as part of writing the test.
This can be a substantial effort. Exploratory testing
features automatically create mock objects to use when
executing the code under test. Thus, they can provide
feedback about the behavior of the unit of code, even
when the external integration points are incomplete.

Sample ODT Observations of Possible
Unintended Code Behaviors
This section provides an example of first using a TDD
process to create tests and code, then using an ODT
process to identify and resolve unintended code behavior.

Using TDD
First, let’s say our requirements call for a method
to set a model number String for a product. In the
Product class, the setter method should check the
input parameter for the following:

• ��String cannot be null
• ��String cannot be blank
• ��String cannot contain newline or

carriage return characters
• ��String cannot be greater than 40 characters long

Now we will write the tests to fit our requirements:

 | w w w . s o f t w a r e t e s t p r o . c o m22 V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2

ODTwith | TDD

Next we will create the code that will make our tests pass.
To improve readability, we will factor out the input checking
from the setter into a separate validateModel() method:

Using ODT
The new code created by a TDD process seems to fit our
requirements just fine, indicated by our passing tests, but
is it really doing what we want? Let’s agitate it (that is, apply
the ODT process) and see if we can spot any bad behavior:

One glaring observation we can make here is that if we
look at our NORMAL outcome from setModel(), it looks
like agitation found that the string can be from 1 to 39
characters long but the requirement stated “not over 40.”
A simple off-by-one error here could be a problem in the
future, so we should fix the code, re-run the tests and see
if we can make any agitation assertions.

In the code above we have changed the ‘>=’ symbol to
a ‘>’ symbol which should fix the problem. If we re-run
the tests they all still pass, and if we re-agitate the code
we have an observation that reads:

This is now consistent with the specified requirements.
At this point, we should promote that observation to
an assertion. This is a quick alternative to adding another
JUnit test and the ODT tool integrates the results into
the same dashboard report along with the outcomes
of the JUnit tests. Thus, the ODT process improved
the code quality.

Recommendations on When to Apply ODT
ODT can provide value regardless of whether you have
been using TDD. This section provides recommendations
on when to apply ODT, relative to your project’s process
history, development plans, and existing unit test
suite completeness. Additionally, we will discuss when
automated unit test generation can be used to shore
up test deficiencies if you have not been using TDD
or otherwise do not have a complete set of unit tests
(i.e., low code coverage).

TDD can be a very good practice as part of a
high quality software development process. But
TDD is not totally thorough by itself. Even if you
have 100% code coverage with your TDD-generated
tests, your process can be enhanced using ODT.
Furthermore, if TDD has been implemented only
partially by not applying it to all portions of the project,
or has not been used at all, your unit tests may be
incomplete. And therefore automatic test generation
should also be employed as you proceed from this
point. Your process should be enhanced to use ODT
for at least all newly developed and changed code,
and possibly also for code that has a history
of defects.

 Even if you have 100%

code coverage with your

TDD-generated tests, your

process can be enhanced

using ODT.

DaleBrenneman

V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2 23

ODTwith | TDD

The following table summarizes the recommended processes.

TDD ODT Automated JUnit Test Generation

After requirements exist, tests are created, then
code is created to cause failing tests to pass; then
code is refactored to reduce duplication (improving
testability and maintainability)

After code exists, code is analyzed by automation to
identify observations about behavior that may point
out either defects or needs to specify further tests or
assertions; then code may be changed, further tests
created, assertions made, or code refactored

After code exists and is tested and stable, additional
unit tests are created by automation; then after
next code change tests are executed and failed
tests analyzed for potential unintended defects
(regressions); then code may be fixed or refactored,
or other tests created

The following table recommends when to use ODT, and also automatic test generation, based on your
project’s process history, future development plans, and state of existing unit tests.

Process History with
Respect to TDD

Future Development Plans State of Existing Unit Tests Recommended Process Enhancements

1 Just starting development,
and will be using TDD

All new code to be developed
(may have reuse from prior
projects)

None Add ODT to TDD

2 All parts of existing code
base have been developed
using TDD

Much new code still to be
developed

Fairly Complete
(very high coverage)

Add ODT to TDD

3 Some parts of existing code
base have been developed
using TDD, others not

Much new code still to be
developed

Fairly Complete
(very high coverage)

Add ODT to TDD; even if you plan to proceed without
using TDD for new code, at least use ODT

4 Some parts of existing code
base have been developed
using TDD, others not

[same as 3]

Much new code still to be
developed

Incomplete (much less than
100% code coverage)

Add ODT to TDD; even if you plan to proceed without
using TDD for new code, at least use ODT

Add automatic JUnit generation to create a more
complete safety net of unit tests

5 No parts of existing code
base have been developed
using TDD

Much new code still to be
developed

Fairly Complete
(very high coverage)

Add ODT to TDD; even if you plan to proceed without
using TDD for new code, at least use ODT

6 No parts of existing code
base have been developed
using TDD

[same as 5]

Much new code still to be
developed

Incomplete (much less than
100% code coverage)

Add ODT to TDD; even if you plan to proceed without
using TDD for new code, at least use ODT

Add automatic JUnit generation to create a more
complete safety net of unit tests

7 All, some, or no parts of
existing code base have
been developed using TDD

[same as some above]

Little or no new code is
to be developed; only minor
maintenance changes
planned

Fairly Complete
(very high coverage)

Apply ODT to areas of code that have a significant
history of having defects, to help find potential
remaining defects

8 All, some, or no parts of
existing code base have
been developed using TDD

[same as some above]

Little or no new code is
to be developed; rather
only minor maintenance
changes planned

Incomplete (much less
than 100% code coverage)

Add automatic JUnit generation to create a more
complete safety net of unit tests

Apply ODT to areas of code that have a significant
history of having defects, to help find potential
remaining defects

Steps to Use TDD and ODT Together
for Maximized Defect Avoidance
This section provides a suggested
set of steps by which TDD and ODT
can be used together for maximized
defect avoidance. Note that your
processes and terminology may
be slightly different, but the basic
concept is that you would perform
TDD then ODT in small, incremental
steps during development. Reference
earlier sections of this document for
more detail on the processes.

Perform the following in small,
incremental steps:

1. �Apply TDD to develop a small set
of tests and clean, working code,
to the point that you are ready for
checkin; possibly one or several
hours of work up to a day’s work.

• Red Bar

• Green Bar

• Refactor

2. �Apply ODT to improve that code,
to the point that you have no
remaining unintended observations.

• Agitate Code

• Adjust Code

• Add Test Points

Conclusion
It is never a good idea to put all of
your eggs in one basket. No matter
what type of development and testing
philosophies you adapt, including
TDD, there can be holes in your
attempts to reduce defects and
improve maintainability. ODT can
help fill such holes with its automated
code behavior observation. A result
of successfully applying multiple
techniques is that your code will be
more constrained, more maintainable,
and better tested.

V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2

Soasta FullPage Ad_Layout 1 2/9/12 10:33 AM Page 1

V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2 25

tester

Compiled By
Matthew

HeusseR

Matt contributes to the STP community blog
at http://www.softwaretestpro.com/blog or
follow him on Twitter @mheusser

Want More? 			

Go to softwaretestpro.com and join the conversation –
‘Crew’ members can ask your questions and interact
with Michael directly!

Next issue we’ll flip things up a bit – Marlena Compton
will interview yours truly, Matt Heusser, on new directions
in software testing.

Please email your questions, name and location with ‘Ask the
tester’ as subject line to matt.heusser@gmail.com

M
any of the folks we feature on ask
the tester are consultants with big
names and public faces, and that’s
good. Still, we try to achieve a
balance; we also want to hear

from practitioners.
If we’re going to put on a practitioner, how do

we know they are good?
Well, how about someone from a company so

flawless in its IT execution that you never hear
their name in the news?

Here’s one: Lowe’s companies. You know, the
big buildings that sell lumber, hardware, and lots
of other things.

You could probably also guess that they have
a corporate office, HR department, have to pay a
lot of salaries, have a complex supply chain, keep
a website running, and have an IT department
with more than a few testers.

Meet Mike Lyles, QA Program Manager for
Lowe’s Companies Inc.

Like many folks in QA, Mike has been at
one company for over a decade (nearly two),
quietly doing the work while slowly gaining
promotion from help desk to system analyst,
project manager, QA Manager, and now QA
Program Manager.

For this month’s theme on test management,
we thought he was the ideal fit.

Michael Lyles
will now answer your questions.

Question As a test manager, how do we get our
testers to actually work on improving their personal
test approaches and knowledge within whatever test
context the organization has?

– Jon Hagar, Mountain tester; Hot Sulphur Springs, CO, USA

Michaellyles

 | w w w . s o f t w a r e t e s t p r o . c o m26 V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2

askthe | tester

Mike Lyles This is always a struggle. What I
have found in my experience is that it’s even more
difficult to get a testing organization to follow the same
methodologies and practices. We have guidelines,
templates, processes, and standards, yet teams get
caught up in the consistent drive of the projects and lose
focus on following those standards. With any occupation,
the key is to keep yourself in continuous improvement.
There is a quote “HR is not looking out for your career
growth – it’s up to you.” This is so true, especially in
testing organizations. I encourage my team to continually
read up on new processes and methodologies, as well
as look for opportunities to build upon their skillsets by
studying testing materials (books, online repositories
such as www.softwaretestpro.com magazines, articles,
etc). When you cease studies, you cease to improve. And
finally, I encourage my team to think outside the box and
to come prepared to suggest new testing approaches – we
don’t guarantee that all suggestions will get accepted,
but we will surely discuss and determine if it’s an
improvement opportunity. Certifications are an awesome
way for team members to stay in sync. Our organization
went through training courses in early 2011, and each of
our team members became ISTQB certified as a result.
This investment by our company was instrumental to
ensuring that everyone ‘spoke the same language’

Question What is unique about testing at your org
compared with others in the industry? How is testing
changing? Is it changing? Are your concerns as a
manager different than they were as a test practitioner?
If so, how are they different?

– Lanette Creamer, Seattle, Washington, USA

Mike Lyles Our company started our testing group
in late 2008. Before then, testing was conducted by two
developers – the one that developed the code, and another
developer that would conduct a ‘second test’ on the
changes. We have grown so much in three short years yet
we are still evolving as a world class testing organization.
I am not sure I would characterize our organization as
unique compared to others in the industry. In fact, I feel
we are still learning – trying to establish ourselves among
the other groups in IT. However, I do feel we are making
tremendous strides currently, with plans to improve our
processes in 2012 in a way that will make us very effective.

As far as changing, the world changes so fast, you
either follow it and stay ahead or you become irrelevant.
Stephen Covey once said “Nothing fails like success.”
Things you do today that are above par and surpassing
others in the industry will be below average and irrelevant
in a very short time. Therefore, it’s our responsibility to
keep relevant and ensure we move with the best practices
that are being presented by so many of the testing
experts in the field. I am fortunate to be involved in major
initiatives right now, as a Test Environments and SCM
manager, to do just that for my organization. Our first
focus is to ensure our testing environments are stood up,
set up accurately, and ready for the first day of testing.
In concert with this initiative is our focus on Test Data

Management – ensuring that not only our data is accurate
and precise, but that it is in sync among all the various
test environments we work on today. Environments and
Test Data are so critical to the success of testing, and if
an organization is not focusing on these to streamline the
processes and move to steady state in these two areas,
they will always have issues at test execution time. Lastly,
we are making a significant step this year in Software
Configuration Management. While this is not typically a
testing organization role, it is critical to ensure that the
code promoted from development to QA and eventually
to production is 100% accurate. Incorrect code, data, or
environments are three elements that can make or break
a testing organization’s execution.

To your last question – I have held many roles in the
organization. I was a developer & tester for a long time.
I was fortunate to be part of many testing efforts even
before we had the testing group. And I feel that the
major difference in concerns of a test manager verses a
test practitioner is a focus on commitments. In a well-
run team, the test practitioners should feel confident
focusing on the preparation of test cases, preparing for
and conducting test execution. A test manager should
be focused on orchestrating all the external factors that
could keep the test practitioner from achieving those
results – such as coordinating with the Test Environment,
Test Data Management, and SCM teams to ensure that
everything is available and ready for the test practitioners
to do their job. Additionally, while the test manager
should empower the team to monitor and govern the entry
& exit criteria to move between development testing to
QA testing to UAT and production, the accountability for
auditing and governing these practices must belong to
the test manager. Any role where a person is a manager
should be taken seriously. Your team is looking to you for
answers and guidance, and it’s critical to be responsive
and supportive at all times.

Question What would you advise a tester to do now
if they wanted to become a test manager in the future?
How did you become a test manager?

– Lanette Creamer, Seattle, Washington, USA

Mike Lyles This is a great question and one I
get asked by my senior test engineers often. I strongly
feel that each step we take in our careers can prepare
us for the next phase. There is so much to be learned
from being in the trenches as a test engineer. You get
the opportunity to have hands on, “front row,” visibility
to the things that work and the things that do not work
in the testing lifecycle.

The thing I challenge my team to always focus on is
to become evangelists for the testing practices that our
organization has established. And I suggest that they
submit them to memory so vividly that they don’t need
to refer to a standards document or reference book to
speak it. The team should be in sync and speaking the
same language, and MOST IMPORTANTLY, they should
collaborate to ensure that there are no contradictions in
the practices by one team or test engineer verses another.

V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2 27

askthe | tester

The last thing you want to hear in a major project or
initiative is “these rules, standards, practices, entry / exit
criteria are not the same as the last project I worked on.”
If you can get the team to speak consistently, the positive
perception and respect of the organization will grow
exponentially in a very short time.

Lastly, most teams expect their test engineers to be
heads down, running the tests, reporting the results. I
always suggest to team members wanting to move toward
management that they begin building the relationships
with the key stakeholders of the projects they are working
on – because as they move into a management role,
they will need the support from each of these teams to
accomplish their goals fully. Therefore, I always suggest to
my up and rising test managers that they focus on not only
the methodologies, but their approach on how they will
enforce them with minimal to no friction among the teams.

Question Do you experience “communication
gaps” to other managers or execs/stakeholders – i.e. a
simplified perception of what testing can and can’t do (is
and isn’t)? If so, how do you work with that perception?

– Simon Morley, Stockholm, Sweden

Mike Lyles We all know that it is difficult to enforce
standards and practices. We are the ‘Highway Patrol’ of
IT. We set the rules for testing, we post them, and if the
teams are not following them, we step in and work with
the teams to correct the mistakes. The goal of the test
manager is to ensure you do this with tact, respect, and
a focus on collaboration – and that we maintain respect
among the organization in the process. None of us like to
see a Highway Patrol, in our rearview mirror, pulling us
over for a violation – but we most always respect them for
the job they are doing to make the roads a safe place to
travel. The same applies to the role of the test manager
(and ultimately the testing organization). You have to be
prepared to show the value of the testing organization and
the benefit of the methodologies being enforced.

Question And a follow-up, if I may: How do you
discuss or present your “testing story/message/report”
to stakeholders (or other non-testers)? Do you (or your
stakeholders) separate this from ‘feelings’ about the
product being tested?

– Simon Morley, Stockholm, Sweden

Mike Lyles I like your statement of “perception of
what testing can and can’t do.” This is critical to be clear
and concise early in the project for the expected roles
of the testing organization, the development teams, and
any other external teams to the testing group. And it
is important that the key stakeholders are aware and
agree with the set roles and responsibilities. The way our
organization has ensured this collaboration is to schedule
and conduct a kickoff meeting early in the project and
to walk through what our expectations are for entry and
exit criteria and what conditions would cause us to not be
able to move from one phase of the project to the next.

 Once testing has started, the focus should be on the
defects and how to resolve them – the key is to ensure
this is not “we vs. they” – we drive for a collaborative
team approach to determine the reason for the defects,
the resolution, the timing of that resolution, and the
plan for resolving those issues effectively. The earlier
an organization can detect and recognize a defect, the
lower the costs involved in the resolution. Tracking defect
leakage and where the defect was detected (i.e. in Unit
Testing, Component, System Integration, or UAT) will be
critical to helping the team to look for ways to identify
defects earlier in the process.

Question As a QA Program Manager, how do you
think you can best impact a tester’s role? (Speaking of
which, how do you differentiate between test program
management and test management?)

– Janet Gregory, Calgary, Canada

Mike Lyles In our organization it has proven critical,
as a test manager, to provide immediate assistance and
support to the testers to ensure they have everything
easily accessible to conduct their jobs. Our focus for
this year has been to provide fully functional test
environments, concise and accurate test data that is
mapped to the requirements for the project, and to react
quickly to any escalations or needs that the team has
along the way. Another thing we focus on is to ensure
that the testers do not have to debate the methodology
or standards for the testing organization. They should
be able to focus on their role in creating, executing,
and reporting on the testing efforts and the discussions
between the testing organization and the other teams
should be made at the management level.

To your question on test manager vs test program
manager – in my situation, my title didn’t change, only my
role, as a QA Manager and QA Program Manager. However,
my responsibilities grew. Instead of being a direct Test
Manager for a specific project or projects, I was in position
to lead Test Managers who were working with major
program initiatives for the company. We had many testers
across these major strategic programs (over a hundred).
And in this situation, these programs were all inter-
related. Therefore, I spent a lot of my time bridging the gap
between the programs, recognizing the interdependencies,
monitoring the risk – especially if issues or delays in
program A impacted program B, C, or D.

Question Your management asks you to come up
with metrics that will show the value your team brings
to the organization. What metrics do you use?

– Yvette Francino, Colorado Springs, Colorado

Mike Lyles This is one of my favorite subjects when it
comes to testing. “What gets measured gets done” is so true
when it comes to testing organizations. I had the privilege
of meeting Michael Bolton (the testing guru not the singer)
earlier this year at a conference and he was kind enough to
sit with me over dinner and share his thoughts on metrics.

 | w w w . s o f t w a r e t e s t p r o . c o m28

askthe | tester

Michael made a statement that has stuck with me
throughout – he said “First we must agree that what we
are talking about is a Measurement Program. Metrics
is the raw data that feeds a Measurement Program.
You wouldn’t characterize a book as ‘words.’ ” I agreed
and since that time I have referred to our reporting as a
Measurement Program.

Building a world class Measurement Program is a
monumental task. Anyone who says it is “just data” has
not been involved closely enough to realize the importance
of measurement. And you have to be prepared to present
your measurement program in various ways to different
audiences. For instance, there are things a test manager,
development manager, PMO, or business stakeholder will
want to see that an IT VP or Senior VP will want to see at
a more summarized level.

Regardless, I will share with you some of the
things at each level that I feel are important for any
measurement program:

• �Project Level: Need to show the defect leakage, time
to resolve defects, and the overall metrics on the
effectiveness of the testing at all phases of the project.
Also, if your entry and exit criteria require that certain
levels of defects (i.e. critical defects) cannot exist to
move to another phase of the project, it is critical to
be able to report the status of the critical and high
defects and the timing for when they will be resolved.

• �Management Level: For this reporting, you should

focus on a testing dashboard which will display the
status of the testing efforts, any impacts to timelines,
and any mitigation to the risks of not meeting
those timelines.

• �Executive Level: This is where your reporting
cannot have the raw data. Executives will want
to see the health of the project, but also to recognize
the areas where testing was effective and saved time
and resource dollars along the way. Also, this is an
opportunity for the team to showcase areas where
major issues were diverted and to give praise to
the teams that were responsible for assisting
in the mitigation.

• �Business Level: For this reporting, it is critical to
first sit with your business stakeholders and discuss
what is important to them in measuring the project
success. Different business stakeholders may see
value in various ways. But once you have this
information, the reporting here should showcase
the benefits of the testing, and a focus on how
we saved time and money in the process.

At the end of the day – the goal of the measurement

program is to provide every one of the recipients of the
reports the information they need to fully understand the
status of the project and to be aware of any risks. You will
know that you have successfully implemented an effective
Measurement Program when the selling of the benefits of
the testing organization is coming from the stakeholders
and not the testing organization. And it all hinges on the
accuracy and presentation of a measurement program.

Question As a manager, what challenges have
you faced to keep close and accessible to your team(s)?
What have you done to overcome these challenges?”

– Abigail Buell, South Bend, Indiana

Mike Lyles I assume my challenges would be
the same as any manager in similar environments. The
more you are responsible for, the more meetings and
emails you will be accountable to participate in. Being
accessible is always a challenge but every minute spent
with your key players is critical to the success of your
team. I say “key players” because as a manager, your
focus should be on building a team where you have your
star players supporting you in areas that are the most
critical to your deliverables and your company. Without
this, you will spend all of your time in the details and the
time you need for strategy, planning, and coaching the
team will diminish. My response to this challenge is to
first ensure those key players are in position to support
the team with me. And the one thing you should always
coach the team on is the information that is being shared
with their peers and management. A VP once said to
me during a status update “Mike, tell me what I NEED
to know, not what you WANT me to know.” I have never
forgotten this advice, and when you and your team
follow this mantra, you will find that meetings are more
efficient, status updates are more concise and clear,
and unexpected surprises will cease to exist.

Question I’m a QA Manager, wondering where
to climb next. What does a QA Program Manager do
and how often do testing skills actually come in to play
in that role?

– Eric Jacobson, Atlana, Georgia

Mike Lyles This seems to be common for most
all professionals. Reaching a management position
means preparing for executive management positions
to move upward. And as we know, the number of
positions decrease as you make the climb. Opportunities
are so open, however, as a QA Manager. In my company,
we are still growing as a QA team, and I’m fortunate to
be part of many opportunities to build out something
new and innovative for the organization. My suggestion
to you would be to not wait until you take a step above
QA Manager. Begin today looking for opportunities to
be innovative. Look for areas where the organization
could see a high ROI if a new way of thinking or process
change could be instituted. Volunteer for things you are
passionate about, and give every ounce of hard work and
dedication to making it successful. Words are cheap...
deeds are dear. Let your work speak for you, and you
will be noticed for this in the end. Did I mention you
should look for INNOVATIVE opportunities?

But I will stress again, if you don’t have the appropriate
skillsets and leadership in the Test Manager positions,
you will find yourself drowning in the details and unable
to function as a Program Manager. Team member
selection is critical!

 | w w w . s o f t w a r e t e s t p r o . c o m30

www.softwaretestpro.com/onl inesummit
For more information email info@softwaretestpro.com or cal l 877.257.9531

askthe | tester

Question As a leader, I find a lot of value and joy
in encouraging team members to bring their individuality
to the table. I think it’s very important to rely on the
unique strengths that each person contributes, rather
than forcing people to “do as I say.” How do you tap
into the more personal side of the members of your team
when managing such a large group of people?
Is it possible?

– Michele McCubbins, Buchanan, Michigan

Mike Lyles It has been said that it’s much easier to
pull a string than push it. And I can’t agree with you more
on the value of coaching and mentoring your team. People
join companies for the company and opportunity, and
they most always leave one because of their boss and
how they feel they are valued.

You have to strike the balance between folks who are
capable and willing to take on strategic roles verses
those who want to be given clear direction on the tactical
deliverables. You need both of these personalities to
survive today.

Nothing satisfies me more within the team than a
team member approaching me to say they’d like to offer
a suggestion for a better way to do something. And I was
fortunate to work with one employee who brought me
problems, but always brought me multiple solutions to
them. I felt like I was handed a menu, and all I had to
do was make the best selection.

Also, if you gain nothing else from my responses, the
one advice I can give that I hope you take to heart is
that being a manager does not mean you are always the
mentor or coach. I have learned that you can learn a lot
from your team, and I have had situations where I felt I
was going to be the mentor, and to my surprise, I was the
one that was mentored.

I like your note about tapping into the personal side
of the team. We spend at least one third of our days
working with our teams, and it’s critical to ensure
they are happy, sure of your expectations for them,
working together collaboratively, and delivering to the
expectations. I learned early on that being someone your
team can depend on is very important. And making them

feel important and valuable to the team is your only hope
for survival. It has been said “people don’t care how much
you know until they know how much you care.” If your
team feels valued, respected, and important, they will
move mountains for you. I take pride in making sure I
talk to my team members about their feelings regarding
the efforts we are responsible for, and even if it’s a very
short time due to the size of the team, I make an effort
to spend time with each of them as much as possible.
The challenge is finding the balance, and how you can
work this in to your daily rush of emails, meetings, and
emergencies. However, the more time you find to spend
with your team and appreciate them for their hard work,
the higher the quality and timeliness of their deliverables.

Question What aisle are the hammers in?

– David Hoppe, Grand Rapids, Michigan

Mike Lyles At least one question I know I will be
100% right on – that would be aisle 64 in Tool World.
And my painful attention to detail forced me to call 5
stores in our company and ask them this very question
to validate it was true. I’ll be honest, I expected it to be
different in various stores, but the resounding response
from our helpful Lowe’s store employees was “aisle 64.”

Your question first made me laugh – thanks, I
needed that – but then it made me think of something
motivational I could say to close out this set of questions.
Abraham Maslow said “It is tempting, if the only tool you
have is a hammer, to treat everything as if it were a nail.”
How many times have we, as testing organizations settled
with a tool that we know is not the best choice? How
many times have we known the best solution but decided
we had what we needed to get the job done.

My challenge to each of you is to think differently.
Look for ways to improve your organization. Technology
changes so fast today – and when you see something that
is successful for another organization, learn from this and
look for opportunities to do the same with yours. Inform
your management team of new ideas and ways
of thinking, and keep yourself fresh with the latest tools,
methodologies, and best practices. You don’t have to start
the next Apple, Google, or Facebook. You can change the
world we live in one day at a time by reaching beyond
your limits.

My very special thanks to Matt and STQA for allowing
me to be part of this article. And I wish each of you the
best in your future!

Connect to me on linkedin at http://www.linkedin.
com/in/mikewlyles. Or on Twitter: @mikelyles

“ �We spend at least one third	
of our days working with our 	
teams, and it’s critical to ensure	
they are happy, sure of your 	
expectations for them, working 	
together collaboratively, and 	
delivering to the expectations.”

 Mikelyles

www.softwaretestpro.com/onl inesummit
For more information email info@softwaretestpro.com or cal l 877.257.9531

877.257.9531

STP Online Summits are live topic-specific events that are delivered entirely online
for three and a half hours per day over three consecutive days. The speakers present
their sessions live in real time, right on your computer screen. You can listen to and
watch their presentations, as well as ask questions and get instant answers. You will
also be able to network with your fellow participants through an STP Crew that will
be facilitated by our summit host and panel of speakers.

Why Attend?

z Summit programs are created for testers, by testers.

z No travel required.

z Network and interact live with speakers and participants.

z �Sessions are spread out over three days in order to minimize the impact on your
daily schedule.

Date Time Topic

4/10/12 – 4/12/12 10:00am – 1:30pm PT Test Management: Bridging the Gap Between the
Tests and the Stakeholders

6/5/12 – 6/7/12 10:00am – 1:30pm PT Mobile Devices and Applications: What’s the Same,
What’s Different, and What That Means for Testing

Live Interactive Professional Development Without
Ever Leaving Your Home or Office

 | w w w . s o f t w a r e t e s t p r o . c o m32 V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2

automation

 D
o you have a plan to run it and report on it? Are you
going to group your Scripts into suites by test type or
prioritize them by functionality to cover? Do you have
the capability to run scripts unattended? Can you
distribute the workload to different machines and run

them in parallel? Is your equipment and test environment ready to
run? Is the data setup and a database ready to work with? Do you
have a plan for maintaining the framework and scripts? Are your
people trained on how to use and maintain it all?

Think you’re done? Think again, because if you haven’t taken care
of all of these items, you’ve only completed half of the process of
implementing automation.

Test Execution Plan
What is the Execution Plan? The game plan that explains the Who,
What, When, Where and How for execution of tests. It can be a
detailed document, outline or schedule. Or it can be a sketch on a
whiteboard (with the “do not erase” warning and a digital picture of,
it just in case). I like to use a simple MS Project schedule. For me MS
Project is a quick and easy way to build a plan, and make it available
to other teams.

Figure 1

Why create a plan? To better organize and manage the
execution of tests. You need a road map because you can’t run
everything all at the same time. It provides the structure for
grouping tests for execution.

Who uses the plan? The entire project team needs it as a
communications tool, because you don’t want to go ‘dark’.

Done?
You’ve completed your
automation framework
and script development
work. Now what are you
going to do with it?

About The Author 		

Jim Hazen has over 20 years of experience testing
applications on the PC and web platforms. He has
been involved with the startup of testing groups at
multiple companies and has served as a consultant
for the last 10 years.

——————————
byJimhazen

 Create a plan! You can’t run
 everything all at the same time.	
 It provides the structure for
 grouping tests for execution.

V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2 33

automation

Group Tests
Why do we group tests into suites to
be executed? To better manage the
tests and organize them according
to need and focus. This enables the
team to determine what to run, in
what order and when.

There are multiple criteria
to use when grouping tests. For
example, the types of tests, the
functionality to be covered, and the
interaction/dependency of the tests.
On my projects I typically use the
following criteria:

Common Test Types:

• �Smoke – Tests that exercise
the functionality ‘across’ (width)
the system, with little or no
depth. For example; startup,
login, pop a few menu items/
dialogs. This checks readiness/
state of application for in-depth
testing by both manual and
automated means. Done as a
first pass on a new build.

• �Regression (Critical Path) –
Tests that exercise the system
using 80/20 rule (aka the Pareto
Principle), 20% used 80% of
the time. These are basic usage
scenarios to validate necessary
functionality is working correctly.
They are done to ensure the
application is usable and
testable.

• �Regression (In-Depth) –
Tests that exercise the system in
detail. These can be Equivalence
Class/Boundary Value Analysis,
Combinatorial, etc.

• �Business Scenario – Tests
that exercise the system as
a user would to complete a
business task.

• �Fault/Error Handling –
Negative condition tests to
validate fault/error detection
and correct handling.

• �End-to-End – Tests that
exercise the system as a whole.
This tests the interaction of the
system across the middle and
back-end layers.

Functionality Coverage is grouping
according to functionality and
coverage. I find the types listed to
be the most valuable:

• �User Interface

• �Reporting

• �Database

• �Middle and/or Back-end layer

• �Interaction with other systems

Dependency Levels are used
to determine if a test can be run
by itself, priority of the tests, or
if there are other pre-conditions
needed for a test to run. I’ve found
the following to be useful on my
own automation projects:

• �None – Test can be run
independently; creates and
cleans up data as needed, no
dependency upon prior tests
being run, no dependency upon
configuration of system, no pre-
conditions before execution.

• �Data – Test can only be run
with correct data or data
condition present.

• �Environmental – Test can
only be run with correct
configuration of system.

• �Previous Test – Test can
only be run if a prior test has
been executed.

• �Combination – Test is dependent
upon a combination of data or
environment or prior condition
(due to previous test).

The benefits of grouping tests
include improving the team’s ability
to classify, organize and execute
tests according to focus/purpose
of the testing effort. Grouping
improves flexibility of test execution
and the ability to estimate how long
the tests will take to actually run.
This leads to a more efficient use
of the tests and allows for targeted
test execution. It also improves the
ability to understand “ripple effect”
of changes/fixes in scripts, and
reduces rework.

Unattended Execution
One of the original goals of
automation is the unattended
execution of tests. It typically gets
lost in the process of creating the
scripts themselves during a project.
Why does this happen? There are
many reasons, but for now let’s focus
on what it is and its benefits to the
automation project.

Unattended Execution is the
ability to execute a set of tests on
a machine, or set of machines,
without tester intervention or
oversight. The machine does the
work and the tester only needs to
review/evaluate the results of the
execution. Unattended execution
allows testers to focus on the
creation of testing efforts and
eliminate running the scripts “by
hand.” It increases the efficiency of
the execution of automated tests.

A methodology I learned, and
still use is called “SEARCH.”
The acronym translates to:

Setup
Execute
Analyze
Report
Clean up
Help

First each test, or suite of tests,
should setup the conditions of the
test. Setup includes test condition
checks and tasks to ensure the
system under test (SUT) is in the
correct state to run the tests. Second,
the test(s) are executed against the
SUT. Third, the tests should have the
ability to analyze (verify) the results
of its actions as part of execution.
Fourth, the tests should be able to
report on their progress and findings
during execution. Fifth, tests should
clean up after themselves. Temporary
data or files need to be deleted, or
settings need to be reset if changed.
Sixth and final point is Help, where
the documentation of the system is
maintained.

For me the sixth and final point
instead of Help is Home. Tests should
return to a common starting point
(base state) so that the next test
can run without problems. This is
separate from the Cleanup step which
emphasizes that the tests must return
the SUT so other tests can execute
without a lot of additional setup.

Using SEARCH along with
grouping criteria can help in
determining the run order. You can
organize your automation so that
it runs efficiently, and if there are
dependencies you can order tests
correctly to avoid problems. For
example, when tests try to get to
common data and collide.

 Create a plan! You can’t run
 everything all at the same time.	
 It provides the structure for
 grouping tests for execution.

 | w w w . s o f t w a r e t e s t p r o . c o m34 V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2

automation

This can eventually lead to tests running as part of
a Continuous Integration (CI) process, and running
24 hours a day with fewer tester resources needed to
monitor it.

You’ll get more “bang for the buck” by being able to run
tests repeatedly in a consistent and reproducible way.

Distribute Workload
Now you have all your tests organized and ready to run
unattended. You have this stack of tests to run, but are
you going to run it all on one machine? How do you run
it all? The best way to go is to use a distributed model.
Take the workload stack and flip it on its side.

Figure 2

Divide up the workload and run tests using multiple machines.

Figure 3

V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2 35

automation

This allows you to spread the workload (tests) out
across multiple test execution machines and run them
in parallel. You leverage the economy of scale and gain
time efficiencies. You magnify the “illusion of speed” of
automation.

You get more bang for the buck by being able to
run automated tests repeatedly in a consistent and
reproducible way.

Equipment and Test Environments
So far so good. The next step is to figure out where
you’re going to run the tests. What equipment do you
have available? Should you use physical workstations
or virtual machines? If you only need a few machines or
a small budget for test machines then physical ones are
best. You can reuse old systems, or buy inexpensive new
ones. If you need a large farm of test machines it is better
to go with Virtualization. Spend the money on a powerful
server, setup a template for your test machine and run
the automation suite(s) from there. In the long run
virtualization gives you more flexibility for configurations
and maintenance. It’s also cheaper in situations where
a large farm of test systems are needed and to be
maintained. This can be done for both client systems
and servers in your test environment.

Test environments need to replicate the production
system as closely as is possible. If you’re not able to
replicate the production system, scale it down and run
the tests accordingly. If needed, double duty your staging
environment for automated and manual testing. Just be
sure to setup test data that is only used by automation.
This eliminates problems during execution because of
data that may have been changed during a manual test.

If you can, separate the automation environment.
As mentioned before, do this to avoid conflicts with
development and other manual testers. This way
you don’t use the same data/accounts, or allow other
people to change setup/configuration settings during
test runs.

Now it is just a question of justifying the cost and
getting buy-in. Machines are cheap, people are not.
As mentioned before, leveraging more machines can
spread the workload out for the automation. You can
run things in parallel and get more bang for the buck.
This is the illusion of speed. Also, you can run the test
suites in parallel with manual testing and set it up to
run off hours. You now are optimizing your work effort
and becoming more efficient. That means savings for the
company. This is a cost containment and savings method.
Management will appreciate your efforts to contain costs.

Figure 4

 | w w w . s o f t w a r e t e s t p r o . c o m36

automation

Data and Databases
Automation needs the correct data to run successfully.
Without the correct data your scripts will not run
successfully. If possible, pull data from production and
clean it for use. The test data needs to be mapped so
you know which scripts depend upon it. You will have to
mine for it. This takes time and effort. If you are using a
shared a database you will need to separate the data used
by automation and the data used by manual testing. You
don’t want to step on each other’s toes.

Otherwise, the databases will need to be separated
and a baseline backup made for automation. This way
you can restore the database as needed to begin a new
cycle of testing. A baseline backup will save a lot of time
during a project if you do the upfront work needed to
save you time at the end.

Utility Scripts
One thing that is often overlooked in automation projects
is the use of tools to help with other tasks related to
running the tests. Create a set of utility scripts. Use these
scripts to setup and configure the system to some known
base state. This can be done for both pre-test conditions
and post-test restoration. For data and databases have
scripts that create data, or mine for it. If test data is time
sensitive have scripts that age it properly. For the test
environment have scripts that cleanup or restore the test
system itself. For example, have a script for any temp files
created during a test run that need to be removed. Other
things utility scripts can help with are FTP of files or data
from other systems. These can be used for anything else
outside of the execution of the tests themselves. This can
add value to the use of the automation tool(s).

Maintenance of Framework and Scripts
Automation is a development project unto itself.
Treat automation as such, just as you would have
the developers maintain and archive the source code
and components for the system itself. The framework and
scripts ARE code, period. All of it has to be maintained to
continue to receive the benefit of the original effort. Time
and resources have to be pre-allocated to do this task. Plan
maintenance as part of an iteration cycle, don’t put it off.
Be sure to update libraries, components, object definition/
repositories and data sets. After making updates be sure
to retest your automation code, don’t be sloppy.

If you don’t maintain the code, you run the risk of
tests failing for the wrong reasons. Being lazy will cause
your team to incur technical debt which you will never
repay, and it will prevent you from recouping any of the
original investment for the project. This is the first step to
becoming shelf-ware, and the automation project failing.
Don’t waste the company’s time and money; management
will be reluctant to support future automation projects.

Remind management about the automation investment,
and how maintenance is an important task to protect the
investment. This is an asset to the company and we need
to communicate it effectively to the management team.

Training of Staff
Hopefully the right people were hired at the start of
the project. As part of the initial investment, training
was done on the tool(s) and technologies the automation

team was going to work with. We need to keep any
new members of the automation team trained in the
framework and the libraries. Also, additional in-depth
training in the tool(s) is needed. Any additional training
in the technologies being tested, along with programming
and development methods can be beneficial to the
automation team.

Other Testers and BA/SME’s will need to be trained
in how to use the scripts and data files to create usable
tests. Make sure they are trained on how to use the
SEARCH method effectively. Consistency in how tests
are built will make maintaining it all easier later on.
If everyone builds tests in different ways you will soon
have a maintenance nightmare and again incur a
technical debt that will kill the automation effort.

Also other groups, like Management, will need to
be educated on what automation can and cannot do,
and why. Set expectations properly and be sure people
understand. Otherwise you will be setting yourself
up for a world of hurt later on.

Conclusion
In conclusion; we’ve discussed, the Test Execution Plan
and why it is needed. We discussed why grouping tests
for better execution efficiency is a smart thing to do. We
learned what the SEARCH method is and how it improves
the usability of automation. In addition we discussed
the benefits of Test Labs and using Virtualization to
add efficiency, and why test data and databases for
automation are important. We now understand why Utility
Scripts are important for keeping automation running
properly, and how vital maintenance is for the entire
automation system. Last but not least we talked about
the need for training staff, before during and after each
project. The benefits of doing all these things is simple,
it protects the investment in automation and helps to
ensure the usefulness, maintainability and longevity
of it. After all it’s Automation, not Automagic.

References

“How We Test Software At Microsoft,” pg. 187,
Alan Page et al., Microsoft Press, 2009.

“How to Automate Testing: The Big Picture,”
Keith Stobie & Mark Bergman, 1992.

“Virtualization: The Path to Multiple Efficiencies,” Alan Page,
http://www.hwtsam.com/star/Virtualization.pdf, STARWest 2009.

“Software Test Automation,” Mark Fewster & Dorothy Graham,
Addison-Wesley, 1999.

“Automated Software Testing,” Elfriede Dustin et al.,
Addison-Wesley, 1999.

“Implementing Automated Software Testing,” Elfriede Dustin et al.,
Addison-Wesley, 2009.

“Seven Steps to Test Automation Success,” Bret Pettichord,
http://www.io.com/~wazmo/papers/seven_steps.html, 2001.

“Success with Test Automation,” Bret Pettichord,
http://www.io.com/~wazmo/succpap.htm, 2001.

Test Studio
Easily record automated tests for
your modern HTML5 apps

Test the reliability of your rich, interactive JavaScript apps with just a few
clicks. Benefit from built-in translators for the new HTML5 controls, cross-
browser support, JavaScript event handling, and codeless test automation
of multimedia elements.

www.telerik.com/html5-testing

 | w w w . s o f t w a r e t e s t p r o . c o m38 V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2

castyour | eyes

 W
hen it comes time for you to write a job
ad to fill a lower rung position in your
quality assurance department, you might
be tempted to merely copy the same
old, same old boilerplate from other
job postings and put this out there:

Job Requirements:
• �Bachelor’s Degree or minimum 5 years’

experience testing software applications

• �Experience with particular tools or graphical
software, testing or otherwise.

• �Excellent written and verbal communication skills

• �Self-directed

• �Solid, demonstrated knowledge of quality
assurance and testing methodologies

• �Experience writing, executing and maintaining
test plans and test cases

• �Experience with defect tracking tools and processes

• �Experience working in an Agile Development
environment

• �Ability to write and maintain automated test
scripts a plus

• �Experience with some testing package would
be a big plus

The human resources hive mind proffers some
similar combination of job requirements for each
junior level job, but confining your candidate search
to existing members of the IT field might yield you
junior tester candidates who are looking at this
position as a stepping stone to their real goals—
development or design positions. Perhaps you’ll
poach a couple of people making lateral moves
because they’re unhappy with their current
equivalent positions.

Instead of recycling dissatisfied testers, you might
consider hiring people from outside the IT world into
your starting-level QA positions. In the 21st century,

many people have a basic understanding of computer
behavior compared to what you would have found
twenty years ago. Now, almost everyone knows how
to close windows and to launch programs. A lot of
people know the rudiments of website pages and
their behaviors as well, even if they don’t understand
the technologies behind them. Their experience as
software users can readily serve the purpose
of relevant experience in job requirements.

1. Advantages of Non-IT Testers
Although it might not seem obvious at first, hiring
testers from outside the professional information
technology world offers some distinct advantages.

First and foremost, people hired from outside of IT
view websites and applications like real users do. They
have not spent several years’ worth of weekdays (and
some weekends) plunking at keyboards running the
same test cases over and over. Instead, they approach
applications with fresh eyes, ready to identify things
that might be obvious oversights or problems but that
the organization has overlooked or ignored because it
was looking at macro-level considerations. An absence
of a forestry degree allows one to appreciate the
individual trees.

Unseasoned candidates also lack experience in the
bad habits of information technology workplaces. This
can include some complacencies in the way things
are done in your organization and in the industry as a
whole. For example, someone not steeped in IT might
not understand why a set of actions that crash the
application is not a real problem. He or she might not
know that nobody would do what he has just done. Or
the new guy might not understand that it is customary
to overlook mere misspellings.

When you hire some experienced testers, those testers
can bring a wealth of experience about how they did
things at the old place. In many cases, you can learn
something from how things are done elsewhere, and
this information can help improve your organization’s
process. However, sometimes an experienced tester can
waste time trying to make your organization do things
“the right way”—that is, the way the tester is already
comfortable doing things. Sometimes people resist
altering their habits, and the effort to retrain someone

Cast Your
Eyes Afield:
Hiring Testers From Outside The IT Industry

————————————
by Brian J. noggle

V o l u m e 9 | I s s u e 2 | F e b r u a r y / M a r c h 2 0 1 2 39

castyour | eyes

ingrained in one way of doing things can equal the
effort to train someone in the first place.

Inexperienced candidates are not Dryden’s noble
savages, but hiring someone from outside the IT
industry to a junior position on your team does offer
some possible advantages. The key, though, lies in the
candidate. Although I cannot tell you the competencies
and abilities of individual people, you might find some
resume items could indicate a hidden aptitude for
software testing.

2. Finding Outsiders
Not all non-IT candidates are the same. You might

find that the resumes include experience that is
not directly related to software testing but that can
highlight a candidate amenable to the software testing
way of thinking, concentration, a good attention span,
tenacity, and attention to fine detail.

People Working in Other Precise Professions
You might not think that people who work in
manufacturing and other hands-on, non-office jobs
could have any skills your junior software tester
needs. Think again. Many professional trades require
a keen eye for detail and a quick appraisal of defective
product. Printers, for example, can pull a sheet of
paper from a conveyor belt and instantly identify the
misalignment of elements by fractions of an inch,
improper colors, and other flaws that they need to
correct before the mistake is replicated—expensively—
thousands of times. For that matter, your local copier
operator from FedExKinkos should have the same eye
for detail. Machinists and machine operators might not
only know how to adhere to processes and procedures
to improve quality, but if you talk about certain
quality methodologies, such as Six Sigma and LEAN
principles, they can relate.

People with Precise Hobbies
A large number of crafting hobbies require a precise eye
and patience. Anyone who knits, paints lead figurines,
weaves elaborate tapestries with beads, or builds
china cabinets in the workshop already demonstrates
a commitment to concentration and, quite possibly
both patience to make something right and impatience

to things that are imperfect. Crafters vary in skill of
course, but most people who have practiced a hobby
for any length of time have evolved some skill in it.
Ask your inexperienced interviewees what sorts of
hobbies they pursue, and delve into precision hobbies.

Former Military Servicemen and Servicewomen
Popular depictions of servicemen and women in
film tend to center on two archetypes: psychos and
Sergeant Bilko types. In reality, former members of
the military are well-adjusted and, if they’ve served
any length of time, they’re not bumbling clowns like
Bill Murray or Phil Silvers. They’re professionals
accustomed to process and procedure and to making
quarters bounce off of bunks. They understand
teamwork and cohesion. They’ve learned to adapt to
conditions and situations outside of control or that
deviate from the original plan and to survive those
situations. While QA is not life-or-death, that spirit
and mindset comes in handy. You might want that
sort of five-by-five signal on your team. And if the
developers fear that they’ll make Tst. 2nd Class Reever
lose it if they don’t fix issue #1308, so much the better.

3. Conclusion
With our heads down and our attention focused
squarely on IT problems and challenges, when it
comes time to hire junior level positions for software
testers, our immediate bias is toward the IT industry
and candidates within it. In QA, though, we look at
software applications with an eye to doing something
different and unexpected to beneficial effect. When it
comes time to look at job applications, a little of the
unconventional might prove advantageous to the QA
team and to the organization.

About The Author 				

Brian J. Noggle has worked in quality assurance and technical writing for
over a decade, working with a variety of software types and industries. He
currently works as a freelance software testing consultant through his own
company, Jeracor Group LLC.

Cast Your
Eyes Afield:
Hiring Testers From Outside The IT Industry

